

ALCOTimes

BALAJI ENZYME & CHEMICAL PVT LTD

Akshay Mittal Industrial Estate
A-113, 1stFloor, Building No 5, Sir M V Road, Andheri (East),
Mumbai - 400059 | +91-22-460 31 666
E-mail: info@becpl.in | Web.: www.becpl.in

Introducing AlcoTimes:

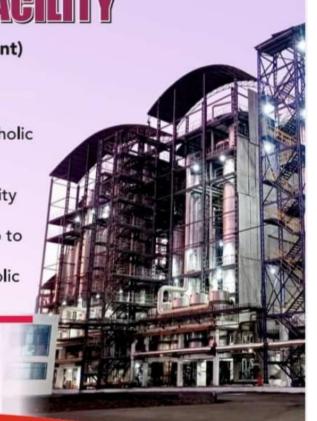
We Balaji Enzymes & Chemical Pvt Ltd are sharing our monthly newsletter ALCOTIMES for Alcohol Industry. Now we are happy to launch our new monthly news letter "ALCOTIMES" for Alcohol Industry.

About Our Company:

We M/s Balaji Enzyme & Chemical Pvt Ltd are a leading supplier of Enzymes, Filter aid, Yeast, Hops, Processing aids, Clarifiers and food fortification products to breweries, distilleries, malt extract industry, starch industry, juice and beverage industry, and other food industry.

CONSULTANTS FOR DISTILLERY & BOTTLING FACILITY

BKGOEL


Email: goelbk20@gmail.com Ph.: 8962405107, 8889939879

CONSULTANTS FOR DISTILLERY & BOTTLING FACILITY

We are a team headed by Mr. B K Goel (Consultant) for below Projects/Jobs.

- 1. Setting up a distillery unit For Ethanol & ENA.
- Setting up a bottling unit for manufacturing of Alcoholic Liquors such as Rum, Whisky, Gin, Brandy, Vodka & RTD.
- Setting up the Malt Spirit Plants producing the quality as Vatted Malt Spirit.
- Blending / Development of various liquor brands up to highest Level.
- We also take annual contract to blend all the Alcoholic products of all range.

May Please Contact B K GOEL goelbk20@gmail.com Ph. 8962405107, 8889939879

BIOFUEL EXPO 2024

International Exhibition on Biofuel Manufacturing Process & Technology, Plant Machinery & Equipment's and Allied Industries

05-07 JUNE 2024 | India Expo Centre Greater Noida, U.P., India

FOCUS INDUSTRIES

- Biofuel (Biodiesel, Ethanol, Biogas, Biomass, Green Hydrogen) Manufacturers
- Biofuel Plant's Equipment's & Machine Manufacturers
- Biomas Briquettes, Pallets and Machinery Manufacturers
- Biofuel Manufacturing Technologies
- · Bio Refinery (Ethanol/Biofuel) Units
- Boiler, Steam Turbine & Air Compressor Manufacturers
- Presser Vessels, Heat Exchanges & Parts Manufacturers
- Heavy Material Handling & Movement Equipments Manufacturers
- Fabricators & Consultants
- Research & Development Organization
- Government Institutions
- EPC Solution Company for Bio Ethanol Industries.
- EPC Machinery for Bio Ethanol Plant Manufacturers
- Beer, Malt, Wine, Carbonated Drink, Starch, Alcohol Grain and Molasses, Malt Sprits Whiskey process, Distillery and Liquor Plant Machinery.
- EPC solution for Grain Unloading and Milling Section & Grain Processing Machinery
- Pre Cleaner, Vibro Classifier, Destoners, Material Handling, Aspiration System, Hammer Mill.

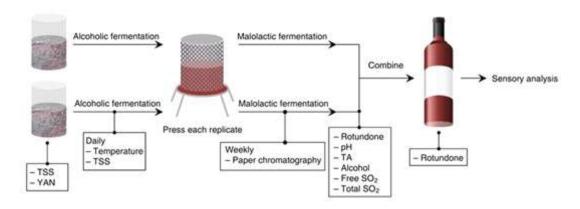
CONRURRENT EVENTS

- World Environment Expo (WEE 2024)
- · Green India Awards 2024
- India Biofuel Meet 2024

ORGANIZERS

BIOTECHNOLOGICAL INNOVATIONS FOR ENHANCED ALCOHOL FERMENTATION EFFICIENCY

DR. VIJAYA TRIPATHI


R & D Head Nutrelis Agro Foods, Sector 63, Noida.

E. mail: vijayat16@gmail.com

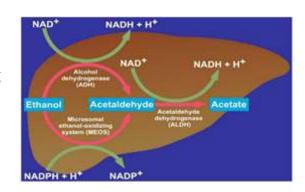
Ph. No. 9792241659

Genetic Engineering of Yeast Strains:

Investigating the use of genetic engineering techniques to modify yeast strains for improved alcohol fermentation performance, including enhanced ethanol tolerance, substrate utilization, and metabolic flux optimization. By leveraging advances in molecular biology, synthetic biology, and bioprocess engineering, researchers can tailor yeast strains to meet the evolving demands of the industry, from increasing production yields to reducing production costs and environmental impact. Continued research efforts and collaborations between academia and industry are essential to realize the full potential of genetic engineering in the alcohol industry and drive innovation towards sustainable and efficient alcohol production processes.

Microbial Consortia for Synergistic Fermentation:

Exploring the use of microbial consortia consisting of multiple species (e.g., yeast, bacteria) for synergistic alcohol fermentation, leveraging complementary metabolic pathways and cooperative interactions to enhance overall efficiency and product yield, increase product yield, and improve overall process robustness. Through careful selection and optimization, microbial consortia represent a promising approach to address challenges in traditional fermentation processes and unlock new opportunities for sustainable alcohol.



Enzyme Engineering for Biomass Conversion:

Studying enzyme engineering approaches to develop highly efficient enzymes for the hydrolysis of lignocellulosic biomass into fermentable sugars, focusing on substrate specificity, catalytic activity, and thermostability for improved saccharification efficiency.

Metabolic Engineering for Co-factor Regulation:

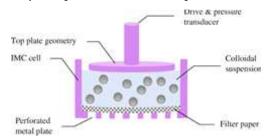
Investigating metabolic engineering strategies to manipulate co-factor availability and redox balance in microbial cells during alcohol fermentation, optimizing NADH/NAD^+ ratios and minimizing metabolic bottlenecks to enhance ethanol production rates.

Systems Biology Approaches to Metabolic Modeling:

Systems biology approaches to metabolic modeling utilize computational and experimental techniques to comprehensively analyze and predict cellular metabolism in alcohol fermentation processes. By integrating omics data, mathematical models, and biochemical knowledge, researchers can gain insights into metabolic networks, identify key regulatory nodes, and optimize fermentation conditions to maximize ethanol yield, enhance process efficiency, and tailor product characteristics. These holistic approaches enable a deeper understanding of the complex interactions within microbial systems, driving innovation and optimization in the alcohol industry.

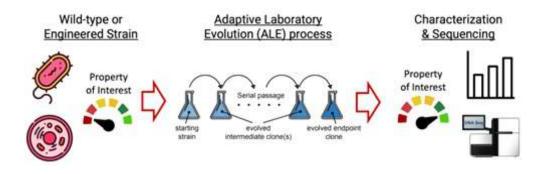
Bioreactor Design and Process Optimization:

Bioreactor design and process optimization are critical aspects of alcohol production, involving the development of efficient vessel configurations and operational strategies to maximize fermentation performance. By engineering bioreactors with optimal mixing, oxygenation, temperature control, and nutrient supply, researchers can create ideal environments for yeast growth and ethanol production. Additionally, process optimization techniques such as statistical experimental design and mathematical modeling enable the identification of key parameters influencing fermentation kinetics and the refinement of operating conditions to maximize productivity and product quality. Overall, bioreactor design and process optimization play pivotal roles in enhancing alcohol production efficiency and sustainability.


All in one IIoT Beer Fermentation Monitor

Advanced Fermentation Monitoring and Control:

Advanced fermentation monitoring and control involve the implementation of sophisticated technologies and strategies to continuously monitor and regulate key parameters during alcohol fermentation processes. By utilizing online sensors, spectroscopic techniques, and automated control algorithms, operators can optimize fermentation conditions in real-time, ensuring optimal yeast growth, substrate utilization, and ethanol production rates. These advanced monitoring and control systems enhance process efficiency, improve product consistency, and reduce energy consumption, ultimately leading to higher yields and lower production costs in the alcohol industry.


Immobilized Cell Technologies:

Immobilized cell technologies involve the confinement or attachment of microbial cells within a matrix or support material during alcohol fermentation processes. By immobilizing yeast cells, researchers can enhance cell stability, improve fermentation kinetics, and facilitate continuous or semi-continuous production processes. Various immobilization techniques, such as encapsulation, adsorption, and entrapment, offer distinct advantages in terms of cell retention, protection from environmental stressors, and operational flexibility. Immobilized cell systems also enable the recycling and reuse of biocatalysts, reducing production costs and waste generation in the alcohol industry. Overall, immobilized cell technologies represent a promising approach to enhancing fermentation efficiency and scalability while maintaining product quality and consistency.

Adaptive Laboratory Evolution (ALE) Studies:

Adaptive Laboratory Evolution (ALE) studies involve subjecting microbial populations to prolonged cultivation under controlled conditions, with the aim of inducing adaptive changes that enhance desired traits such as ethanol production in the context of alcohol fermentation. By continuously selecting for variants with improved fitness, ALE allows researchers to explore evolutionary dynamics, identify beneficial mutations, and optimize microbial strains for specific industrial applications. This evolutionary engineering approach offers insights into the genetic and physiological basis of microbial adaptation, enabling the development of robust and high-performing strains for sustainable alcohol production.

Integrative Bioprocess Engineering:

Integrating biotechnological innovations with engineering principles to design holistic bioprocesses for alcohol production, considering factors such as substrate pretreatment, fermentation kinetics, downstream processing, and waste valorization to achieve overall process efficiency and sustainability.

In conclusion, biotechnological innovations offer significant potential for enhancing alcohol fermentation efficiency. Through techniques like genetic engineering, microbial consortia, and advanced monitoring, researchers can optimize fermentation processes, improve yields, and reduce environmental impact. These innovations promise a more sustainable and economically viable future for the alcohol industry.

Amylase Used in Alcohol Distilling?

In alcohol distillery, both alpha-amylase and glucoamylase play crucial roles in the conversion of starch into fermentable sugars, which are then fermented into alcohol. Here's a breakdown of their roles:

Amit Upadhaya Manager-Alcohol Industry Balaji Enzyme and Chemical Pvt ltd

01. Alpha-Amylase:

This enzyme is responsible for breaking down long-chain starch molecules into shorter-chain maltose molecules. Starch is a complex carbohydrate found in grains like corn, wheat, and barley, which are commonly used in alcohol production. Alpha-amylase hydrolyzes the alpha-1,4 glycosidic bonds between glucose units in the starch, creating shorter chains of maltose dextrins.Alphaand other randomly breaks Amylase starch molecules into smaller sugar molecules. Such as monomers, diamers, and dextrins

02. Glucoamylase (also known as amyloglucosidase):

This enzyme further breaks down the molecules shorter-chain maltose produced by alpha-amylase into glucose. Glucoamylase cleaves the alpha-1,4 glycosidic bonds at the non-reducing end of the glucose polymer, liberating individual glucose molecules. Glucose is the primary fermentable sugar that yeast can readily metabolize to produce alcohol and carbon dioxide during fermentation.

ABHAY VISHWAKARMA

Grain-based distilleries use various grains as raw materials for producing alcoholic beverages such as whiskey, vodka, and other spirits. The primary grains used in these distilleries include:

1. Corn

Usage: Predominantly used in bourbon production.

Characteristics: High starch content, which converts to sugar and ferments into alcohol efficiently. Corn imparts a sweet flavor to the final product.

2. Barley

Usage: Commonly used in Scotch whisky and other malt whiskies.

Characteristics: Contains enzymes that help in breaking down starches from other grains. Malted barley contributes to the distinctive malt flavor and can influence the texture of the beverage.

3. Rye

Usage: Key ingredient in rye whiskey and used in some gins.

Characteristics: Adds a spicy and fruity flavor to the spirit. Rye can also impart a certain level of complexity and a dry finish.

4. Wheat

Usage: Used in the production of some types of whiskey and vodka.

Characteristics: Contributes to a smoother, softer taste in the final product. Wheat-based spirits are often described as having a lighter body and a slightly sweet flavor.

5. Oats

Usage: Less commonly used, but sometimes included in small quantities in whiskey production.

Characteristics: Adds a creamy texture and can contribute to the mouthfeel and smoothness of the beverage.

Additional Considerations:

Yeast: Essential for fermentation, converting sugars from the grains into alcohol.

Water: Quality and source of water can significantly impact the flavor of the final product.

Malt: Some distilleries use malted grains to provide natural enzymes necessary for starch conversion during mashing.

Process Overview:

Milling: Grains are ground into a coarse flour or meal to facilitate the extraction of fermentable sugars.

Mashing: Ground grains are mixed with water and heated. Enzymes (either naturally present in the grains or added) convert starches into fermentable sugars.

Fermentation: The mash is cooled and yeast is added. Yeast ferments the sugars into alcohol, producing a "wash" or "beer" with low alcohol content.

Distillation: The wash is distilled to separate alcohol from water and other components, concentrating the alcohol.

Aging (if applicable): Distillate is aged in barrels to develop flavor, color, and character. This step is particularly crucial for products like whiskey.

Bottling: The final product is diluted to the desired strength and bottled for sale.

Grain selection, water quality, yeast strain, and distillation techniques all play crucial roles in determining the flavor profile and quality of the final spirit.

ALCOTIMES, May 2024

APEX WINE CLUB INDIA, EVENT, PUNE ON 5[™] MAY
PHOTO COURTESY, PUNE, AWCI.
COLLAGE, ASHISH SHARMA, SR. ADVISER, AWCI, BECPL, N.DELHI
COORDINATOR: DEEPALI, PUNE

ALCOTIMES, May 2024

1ST WINE KNOWLEDGE COMPETITION(WKC)

Under Apex Wine Club India, conducted by *Ambali Bhattacharya*, National Chapter Head, the first on line competition was held last Saturday, 20th. April at 69th Wine & Cheese event of Hyderabad Chapter (6th event of them).

35 contestants joined from cities like Delhi and Pune, apart from Hyderabad.

Winner of our first Wine Knowledge Competition is Mamata Bharadwaj from Pune.

She played the quiz game online. Her prize, the wine bottle, shall be handed over at the next Wine & Cheese event of AWCI at her city, Sun. 5th May'24.

(*Mamata* is one of AWCI's Sr.Chapter Heads, experienced Wine professional and a Sr.management personnel, with nationally renowned co. *Balaji Enzyme & Chemical P Ltd., * Mumbai, posted in Pune.)

The Art and Science of Crafting Molasses-Based Alcohol

Rahul Jha
Sales Executive
Balaji Enzyme and Chemical Pvt Ltd

Introduction

Alcohol production from molasses is a fascinating fusion of art and science, where centuries-old traditions meet modern techniques to create a diverse array of spirits with complex flavor profiles. From the robust richness of rum to the nuanced subtleties of flavored liqueurs, molasses-based alcohol offers a world of exploration for both producers and enthusiasts alike. In this article, we delve into the intricate process of transforming molasses into alcohol and explore the flavors that emerge from this alchemical journey.

The Molasses Transformation Process

Fermentation: The journey begins with molasses, the dark, viscous byproduct of sugar refining. Molasses serves as the raw material for alcohol production due to its high sugar content, which provides the essential fuel for fermentation. Yeast, the microorganism responsible for fermentation, is introduced to the molasses, where it converts sugars into alcohol and carbon dioxide. This process typically takes several days to complete and yields a liquid known as "wash" or "beer."

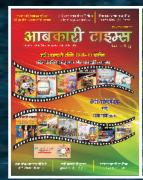
Distillation: Once fermentation is complete, the wash undergoes distillation to concentrate alcohol and refine flavors. Distillation involves heating the wash in a still to separate alcohol from water and other impurities based on differences in boiling points. The result is a high-proof alcohol known as "distillate" or "raw spirit," which forms the foundation for further refinement and aging.

Aging and Maturation: Depending on the desired style of alcohol, the distillate may undergo aging and maturation in wooden barrels or stainless steel tanks. Aging allows the spirit to develop its character, mellow harsh flavors, and absorb nuances from the aging vessel. Oak barrels are commonly used for aging molasses-based spirits such as rum, imparting flavors of vanilla, caramel, and spice through the extraction of compounds from the wood.

Flavor Infusion: In some cases, producers may choose to infuse the alcohol with additional flavors to create specialty liqueurs or flavored spirits. This process involves steeping ingredients such as fruits, herbs, spices, or botanicals in the alcohol to extract their essences and create a harmonious blend of flavors. Flavored alcohol from molasses offers endless possibilities for creative experimentation, allowing producers to showcase unique flavor combinations and cater to diverse consumer preferences.

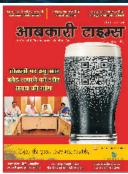
Exploring the Flavors of Molasses-Based Alcohol:

Rum: Perhaps the most iconic molasses-based spirit, rum boasts a rich history and a spectrum of flavors influenced by factors such as raw materials, fermentation, distillation, and aging.


Light rums, often aged for a shorter duration or filtered to remove color, exhibit crisp, clean flavors with subtle hints of molasses and tropical fruits. Dark rums, on the other hand, undergo extended aging in oak barrels, resulting in deeper, more complex flavors characterized by notes of caramel, vanilla, spice, and oak.

Flavored Liqueurs: Molasses-based alcohol serves as a versatile canvas for crafting flavored liqueurs that appeal to a wide range of tastes and preferences. From the zesty citrus of orange liqueur to the warmth of spiced rum, flavored liqueurs offer a sensory experience that combines sweetness, aroma, and complexity. Whether enjoyed on their own, mixed into cocktails, or used as flavor enhancers in cooking and baking, flavored liqueurs add depth and dimension to the drinking experience.

Artisanal Distillates: In recent years, the craft distilling movement has sparked a renaissance in molasses-based alcohol production, with small-batch distilleries pushing the boundaries of innovation and creativity. Artisanal distillates showcase the unique terrier of their source materials, incorporating locally sourced molasses, heirloom yeast strains, and experimental aging techniques to create spirits that reflect their distinct origins and the artistry of the distiller.


Conclusion

Alcohol production from molasses is a multifaceted process that combines tradition, innovation, and a deep understanding of chemistry and flavor. From the humble beginnings of sugarcane refinement to the sophisticated art of distillation and aging, molasses-based alcohol offers a sensory journey that celebrates the richness and diversity of flavors inherent in this ancient elixir. Whether sipped neat, mixed into cocktails, or savored in culinary creations, molasses-based alcohol continues to captivate connoisseurs and inspire the imagination of spirits enthusiasts worldwide.

To keep yourself abreast with the latest in Alcohol

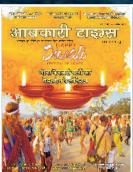
SUBSCRIBE NOW

Hindi Monthly News
Magazine on Excise,
Alcohol and Prohibition

Aabkari Times is a first Hindi monthly news magazine on alcohol, sugar and prohibition being published from Allahabad since 2009. The editorial team has retired excise and sugar dept. official. This magazine covers different articles and news on govt. policies related to sugar, alcohol, ethanol.

Period	Courier/Regd.Post	E-Magazine
One Year	Rs. 1500/-	Rs. 1000/-
Two Year	Rs. 2800/-	Rs. 1600/-
Three Year	Rs. 4000/-	Rs. 2000/-
Life Membership	Rs. 15,000/-	Rs. 8,000/-

Our Mission Excise, Alcohol & Prohibition


AABKARI TIMES

485, Mumfordganj, Prayagraj - 211 002 Ph./Fax : 0532-2440267, Mob. - 073797 00003 E-mail : aabkaritimes@gmail.com

To Subscribe sms AT - 73797 00003

चीनी उद्योग एवं गन्ना किसानों पर एकमात्र हिन्दी मासिक पत्रिका

शुगर टाइम्स SUGAR TIMES

(सदस्यता फार्म)/SUBSCRIPTION FORM

	7N (-1				
फोन /फैक्र	फोर्डगंज, प्रयागराज−211002 त : 9415305911, 73554 info@sugartimes.co.in		Oate - Member No /alid Upto - Follow us on @TheSugarTime	es	
मैं शुगर टाइम्स की सदस्यता प्राप्त करने का इच्छुक हूँ।					
Pls. Tick	Period	Courier/Regd. Post	E-Magazin	e	
	One Year	Rs. 2000/-	Rs. 1000/	- 1	
	Two Year	Rs. 3600/-	Rs. 1600/	-	
	Three Year	Rs. 5000/-	Rs. 2000/	-	
	Life Membership	Rs. 15,000/-	Rs. 8000/	-	
मैं अपनी राशि Cash Cheque Online SUGAR TIMES के नाम Payable at Allahabad भुगतान कर रहा हूँ। For online Subscription Login to sugartimes.co.in/subscribe पर कर सकते हैं। Our Banker Name : UCO Bank, Branch - Mumfordganj, Prayagraj Current A/C No. 16110210000861, IFSC Code - UCBA0001611					
Name		Des	sig		
Address_					
12 <u></u>		Pin	en.		
E-mail					
Mobile	Date of Birth				
Cash/Cheque/RTGS No		Dat	ted		
	UPI ID- 8756062435@okbi i	zaxis	Signa	ture	
पत्रिका कोरियर/डाक द्वारा भेजी जाएगी, अतः कृपया पूरा पता लिखें।					

EXPLORING THE VITAL ROLE OF ENZYMES IN GRAIN-BASED DISTILLING

Introduction

Enzymes play a crucial role in grain-based distilleries, particularly in the mashing stage, where they facilitate the conversion of starches into fermentable sugars. Here's a breakdown of the role of enzymes in a grain-based distillery:

Starch Conversion: Grains such as barley, corn, rye, and wheat contain starches that are not directly fermentable by yeast. Enzymes are used to break down these complex starch molecules into simpler sugars that yeast can easily metabolize during fermentation. The two primary enzymes involved in this process are:

Alpha-Amylase: This enzyme breaks down starch molecules into shorter chains of sugars such as maltose and dextrins. It works by hydrolyzing the alpha-1,4 glycosidic bonds within the starch molecules.

Beta-Amylase: Beta-amylase further breaks down the shorter starch chains produced by alpha-amylase into fermentable sugars such as glucose. It acts on the non-reducing end of starch molecules, cleaving off maltose units.

Temperature and pH Dependence: Enzymes are highly sensitive to temperature and pH levels. Optimal conditions for enzyme activity vary depending on the specific enzyme involved. In the mashing process, the temperature and pH are carefully controlled to ensure maximum enzyme activity and efficient starch conversion.

Enzyme Sources: Enzymes used in grain-based distilleries can come from various sources:

Natural Enzymes: Traditionally, enzymes are derived from malted grains. Malted barley, for example, naturally contains enzymes like alphaamylase and beta-amylase, which are activated during the malting process.

Priyanshi Sharma

Commercial Enzymes: Distilleries may also use commercially available enzyme preparations, which are often formulated to have specific activity levels and optimal conditions for starch conversion. These enzymes can be added directly to the mash to supplement or replace natural enzymes.

Process Efficiency: Enzymes improve the efficiency of the mashing process by accelerating starch conversion, which leads to higher yields of fermentable sugars. This efficiency gains importance in large-scale distilleries where maximizing production output is essential.

Consistency and Control: Using enzymes allows distillers to have greater control over the mashing process and achieve more consistent results batch after batch. By adjusting enzyme dosage and mashing conditions, distillers can fine-tune the fermentable sugar profile and optimize the production of desired spirits.

Overall, enzymes are essential catalysts in grainbased distilleries, enabling the efficient conversion of starches into fermentable sugars and contributing to the production of highquality spirits.

18th - 19th 2024

5TH EDITION OF VINEXPO INDIA 2024

Part of the World's Largest Wine & Spirits Exhibition Network

REGISTER NOW

BOOK YOUR SPACE NOW

TUSHAR CHOUDHARY +91 - 9411897007 tushar@interads.in

#vinexpoindia | vinexpoindia.com

www.vinexpo-india.com

Rights to admission reserved with Inter Ads Exhibitions Pvt. Ltd., below 25 years of Age are not allowed.

5-7 DECEMBER 2024

6th Edition of the Biggest Food Innovation Exhibition

300+EXHIBITORS

10,000+ VISITORS

30+ PARTICIPATING COUNTRIES

Don't Miss the Opportunity to Witness the most Activity Oriented B2B Food & Beverage Exhibition.

SIAL CONFE--RENCES

SIAL HOSTED BUYER PROGRAM

SIAL INNO--VATION

SIAL TECH

BOOK YOUR SPACE

EXHIBITOR QUERY

Doly Sharma 9139464646 contact@interads.in **VISIT THE** SHOW

VISITOR QUERY

Gayatri Chibba 9810591686 gayatri@interads.in

DDGS: A COMPREHENSIVE OVERVIEW OF DISTILLER'S DRIED GRAINS WITH SOLUBLES

DDGS stands for Distiller's Dried Grains with Solubles. It's a co-product of the grain-based distillery process, particularly in the production of ethanol from grains such as corn, wheat, or barley. Here's an overview of DDGS and its role in a grain-based distillery:

Production: DDGS is produced as a byproduct during the ethanol production process. After the grains are mashed and fermented to produce alcohol, the remaining solid material, known as stillage or distillers' wet grains, undergoes separation. The liquid portion, called thin stillage, is separated from the solid residue.

Drying: The solid residue, which contains protein, fiber, fat, and other nutrients from the grains, is then dried to reduce its moisture content. This drying process typically involves using rotary drum dryers or other drying methods to evaporate excess water, resulting in a product known as Distiller's Dried Grains with Solubles (DDGS).

Composition: DDGS is rich in protein, with levels typically ranging from 25% to 30% on a dry matter basis, making it a valuable feed ingredient for livestock and poultry. It also contains significant levels of fiber, fat, vitamins, and minerals. The "with solubles" part of the name indicates that DDGS retains some of the soluble components from the fermentation process, including yeast cells and residual sugars.

Animal Feed: DDGS is primarily used as a highprotein feed ingredient for livestock, poultry, and aquaculture. It serves as an alternative protein source to traditional feed ingredients such as soybean meal and corn. Due to its nutritional composition, DDGS can help meet the dietary requirements of animals while reducing feed costs for farmers.

6th April 2024

Akshat Jain
Business Development Manager
Balaji Enzyme and Chemical Pvt ltd

Nutritional Value: DDGS provides a concentrated source of protein and energy, along with essential amino acids, phosphorus, and other nutrients. Its nutritional value can vary depending on factors such as grain composition, fermentation process, and drying methods. However, it is generally considered a valuable and cost-effective feed ingredient for animal diets.

Market Demand: The production of DDGS has grown significantly alongside the expansion of the ethanol industry, driven by the demand for renewable fuels and the desire to utilize co-products efficiently. DDGS is exported globally and is widely used in animal feed formulations, contributing to the sustainability of both the ethanol and livestock industries.

Overall, DDGS plays a crucial role in the grain-based distillery process by providing a valuable co-product that can be used to enhance the nutritional quality of animal feeds and support the livestock industry.

INLINE BRIX MEASUREMENT: L-RIX 4100

ROBUST, MAINTENANCE-FREE INLINE REFRACTOMETER FOR REAL-TIME CONCENTRATION MEASUREMENTS FEATURING INDUSTRY-LEADING OPTICS AND FULL CIP/SIP CAPABILITY.

Key Benefits:

- Maintenance-free forget servicing and operating costs
- Robust for minimized downtime
- Plug and play easy setup with maximum compatibility
- 0 to 80 °Brix-range model with ±0.1 °Brix accuracy
- Transmitter with standard °Brix formula

by Sidd Banerji

5th Anniversary

Memento 22nd to 25th Sept'23

with pictorial intro. of

"Me and My

Wine World"

by Sidd

India's first pictorial coverage of wine events, a 100 paged souvenir of AWCI's 4 days, 5th ann. events. Later part is pictorial prelude to Sidd's planned book, "Me and my Wine

WORLD".

CONTRIBUTIONS,

Rs.600 , US\$ 20 Rs.500 , US\$ 15 For Chapter Heads, (Min order 5 copies). (Prices Include P&P)..

To book, transfer the amount to 9821283932,Tina and intimate ,74003 27681, Prerna.

THE ESSENTIAL ROLE OF WATER MANAGEMENT IN MOLASSES DISTILLERY OPERATIONS

Introduction

Water management is a critical aspect of molasses distillery operations, as it affects various stages of the production process and the overall efficiency of the facility. Here's an overview of water management in a molasses distillery:

Water Sources: Molasses distilleries require significant quantities of water for various purposes, including processing, cleaning, cooling, and steam generation. Water sources may include municipal water supplies, groundwater wells, surface water sources such as rivers or lakes, or recycled water from on-site treatment facilities.

Process Water: Water is used extensively throughout the distillery for various processing steps, including diluting molasses, fermentation, distillation, and product cooling. Managing the quality and quantity of process water is essential to ensure the proper functioning of equipment and the quality of the final product.

Effluent Treatment: Molasses distilleries generate wastewater containing organic compounds, nutrients, and potentially harmful substances. Proper treatment of effluent is necessary to meet regulatory requirements and minimize environmental impact. This may involve physical, chemical, and biological treatment processes to remove contaminants and improve water quality before discharge or reuse.

Water Recycling and Reuse: To minimize water consumption and reduce wastewater generation, many molasses distilleries implement water recycling and reuse practices. This may involve treating and reusing process water, recovering heat from wastewater streams, and recycling water for non-potable uses such as equipment cleaning and irrigation.

Kanak lata
Assistant Marketing Manager
Balaji Enzyme and Chemical Pvt Ltd

Cooling Water Systems: Distillation processes generate heat that must be removed to maintain optimal operating conditions. Cooling water systems, such as cooling towers or heat exchangers, are used to dissipate heat from condensers and other equipment. Managing these systems efficiently helps conserve water and energy while ensuring effective heat transfer.

Water Conservation: Molasses distilleries often implement water conservation measures to minimize water waste and improve overall efficiency. This may include optimizing equipment operation, repairing leaks, implementing watersaving technologies, and promoting waterconscious practices among employees.

Monitoring and Compliance: Regular monitoring of water usage, quality, and discharge is essential to ensure compliance with regulatory requirements and environmental standards. Distilleries may conduct water audits, sampling, and analysis to track water consumption, identify areas for improvement, and demonstrate compliance with permits and regulations.

Overall, effective water management is essential for sustainable operation and environmental stewardship in molasses distilleries. By optimizing water use, treating wastewater, and implementing conservation measures, distilleries can minimize their environmental footprint and enhance their long-term viability.

Constitution of the Party

ALCOTIMES

BALAJI ENZYME & CHEMICAL PVT LTD

Akshay Mittal Industrial Estate
A-113, 1stFloor, Building No 5, Sir M V Road, Andheri (East),
Mumbai - 400059 | +91-22-460 31 666
E-mail: info@becpl.in | Web.: www.becpl.in